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A B S T R A C T   

Multimodal image matching suffers from severe geometric and nonlinear intensity distortion (NID). Towards this 
problem, we propose a multimodal image matching algorithm based on multi-orientation filtering results, called 
position-orientation-scale guided geometric and intensity-invariant feature transformation (POS-GIFT). First, we 
design a multi-layer circular point sampling pattern to effectively capture the local image structure. Then, we 
propose a novel feature descriptor that can work robustly across rotational differences in [0◦, 360◦) in the 
presence of NID. Specifically, we (1) integrate the multi-orientation filtering response in the local neighborhood 
with a Gaussian weight to form the feature of each sampled point (GFP), (2) build feature vectors for each 
orientation by concatenating the features of points grouped by orientation, (3) estimate the primary orientation 
by finding the feature vector with the largest norm which is constructed in the previous step, (4) modify the order 
of elements of GFP, and (5) finally concatenate the features of all sampled points in a certain order to form the 
complete feature descriptor. At last, we propose a position-orientation-scale guided inlier recovery strategy (POS) 
by integrating the global position, orientation, and scale information to further improve the matching perfor
mance, especially the number and distribution of correct matches in texture-less and complex areas. Experi
mental results on various multimodal datasets from remote sensing, medical, and computer vision imaging 
domains show that POS-GIFT outperforms eight state-of-the-art multimodal image feature matching algorithms 
which are five handcrafted-based methods, OS-SIFT, PSO-SIFT, LGHD, RIFT, and LNIFT, and three learning- 
based methods RedFeat, MatchFormer, and SemLA by several times in terms of correct matches while 
improving the root-mean-square error to around 1 pixel. Our implementation is available at https://github. 
com/Zhuolu-Hou/POS-GIFT.   

1. Introduction 

Image matching, termed as finding correspondences between im
ages, is a fundamental work for many photogrammetry and computer 
tasks [1–5], such as image registration [6–8], image stitching [9], 
change detection [10,11], SLAM [12–14], visual localization [15,16], 
navigation [17–19] and 3D reconstruction [20–22]. Even though this 
topic has been investigated for decades, accurate image matching for 
multimodal images is still far from being solved due to severe nonlinear 
intensity and geometric distortions caused by different imaging mech
anisms, viewpoints, shooting times, etc. 

Various image matching methods have been put forward to combat 
the modal difference by modifying the classical region-based and 
feature-based algorithms designed for the same modality of images [23, 
24]. Region-based matching methods typically use the correlation 

coefficient or mutual information between image blocks to determine 
their similarity [25,26]. However, the correlation coefficient is sensitive 
to nonlinear intensity changes, and the mutual information is prone to 
local optima [27]. Towards this, Ye et al. proposed using 
phase-consistent amplitude and orientation to generate 
orientation-phase consistency histograms (HOPC) [28] and computing 
orientated gradients to form channel features of orientated gradients 
(CFOG) [29] to overcome nonlinear intensity distortion(NID). Even 
though these area-based methods have relatively matching accuracy, 
they heavily rely on prior positional information between images and 
are sensitive to geometric distortions. 

Different from area-based methods, feature-based methods extract 
scale and orientation invariant features, showing better robustness 
against geometric distortions. Yet, traditional image features, such as 
SIFT[30] and SURF [31], are based on intensity, gradient, and oriented 
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gradient information, which are sensitive to nonlinear intensity differ
ences. The performance will decrease significantly when handling 
multimodal images. Recent research [29,32,33] shows that the features 
constructed based on multi-scale and multi-orientation filtering results 
have good robustness against NID, such as the Log-Gabor histogram 
descriptor (LGHD) [34] and the radiation invariant feature transform 
(RIFT) [35]. In terms of geometric distortions, these methods cannot 
handle large image rotations, and the reason is that these methods apply 
the traditional primary orientation calculation methods to eliminate the 
effect of rotation, which performs poorly on multimodal images. These 
methods exhibit limited robustness in handling significant image rota
tions due to their reliance on conventional dominant orientation esti
mation algorithms. As a result, their performance is unsatisfactory in 
image matching tasks involving severe geometric distortions, such as 
rotation and scale variations, notably in scenarios like street-to-aerial 
image geo-localization [36], UAV-based precision agriculture [37], 
traffic management [38], and marine organism observation by under
water robots equipped with multiple sensors [39]. In addition, 
compared with the same-modal images, more false matches are pro
duced during the image matching process, significantly decreasing the 
creditability of the obtained matches and leading to matching failure. 

With the rapid development of artificial intelligence technology, 
deep learning is also introduced to solve the task of multimodal image 
matching, and several methods have been developed, such as MU-Net 
[40], Loftr [41], and SemLA [42]. Even though these methods ach
ieved promising results in their datasets, they have limitations and are 
currently challenging to apply to diverse engineering applications. 
Firstly, as far as we know, no multimodal image datasets can cover all 
types of image modalities and include sufficient images with labeled 
information for each modality. However, the actual situation can be 
very complex, and the performance could be decreased dramatically 
when it encounters cases not involved in the training process. Secondly, 
the mainstream learning-based image matching frameworks are ori
ented to small-size natural vision images and do not consider specific 
spectral characteristics involved in the remote sensing images, medical 
images, etc., and the geometric distortion such as large scale change and 
image rotation commonly existing in the large-size remote sensing im
ages. Therefore, they may not handle severe NID and significant geo
metric distortions well. Lastly, the training process requires extensive 
computation resources, which is expensive and inefficient, further 
constraining its application. 

In this paper, we propose a novel handcrafted multimodal image 
matching method, position-orientation-scale guided geometric and in
tensity invariant feature transformation (POS-GIFT), which innovatively 
put forward a robust feature descriptor robust to NID and an accurate 
and robust primary orientation method. We construct the descriptor 
based on the multi-scale and multi-orientation filtering results to exploit 
their advantage of good robustness to NID. Considering that the local 
neighborhood information reflects the local image structure, we design a 
multi-layer circular point sampling pattern that mimics the distribution 
of photoreceptor cells in the human visual system and integrates the 
feature of the sampled points with a Gaussian weighted method. Spe
cifically, we robustly estimate the primary orientation by analyzing the 
norm information of the feature at different angles and modifying the 
order of different orientations of filtering results to achieve rotation 
invariance. At last, we develop an effective inlier recovery strategy that 
considers the consistency of position, orientation, and scale information 
simultaneously. 

In detail, the main contributions of this work are as follows:  

1) We propose a novel multimodal image matching method, POS-GIFT, 
invariant to geometric transformations (translation, rotation, scale 
change) and non-linear intensity distortions. POS-GIFT outperforms 
eight state-of-the-art multimodal matching algorithms, which are 
five handcrafted-based methods, OS-SIFT, PSO-SIFT, LGHD, RIFT, 
and LNIFT, and three learning-based methods RedFeat, 

MatchFormer, and SemLA by several times in terms of the number of 
correct matching points (NCM) while maintaining high accuracy on 
various multimodal image datasets.  

2) We propose a robust primary orientation estimation method based 
on multi-scale Gaussian-weighted multi-orientation filter responses, 
achieving rotation invariant at a full range of rotation angles of [0◦, 
360◦). Since the weighted norm information of multi-orientation 
filter responses can maintain rotational invariance under various 
NID, this method can be applied to various related engineering 
applications. 

3) We introduce an effective inlier recovery strategy, which compre
hensively utilizes the characteristic of position-orientation-scale 
consistency of correspondences and significantly improves the 
credibility of obtained matches with respect to NCM and accuracy. 

2. Related work 

Generally, multimodal image matching algorithms can be divided 
into three categories: region-based, feature-based, and learning-based 
image matching methods [8]. A brief review of the multimodal image 
matching methods is as follows. 

Region-based Matching: The core idea is to calculate the similarity 
between the target image block and the reference image block based on 
a predefined similarity measure and select the reference image block 
with the highest similarity as the correct correspondence [43]. Corre
lation coefficients [44] and mutual information [45–47] are commonly 
used similarity metrics. However, the correlation coefficient is sensitive 
to nonlinear intensity difference, and MI is prone to fall into local op
timum, making them unable to match the multimodal images effec
tively. Considering that the image structure remains unchanged across 
different image modalities, recent studies have developed several area 
descriptors based on the image structure information. For example, Ye 
et al. proposed the histogram of oriented phase consistency (HOPC) [28] 
algorithm, Ye et al. proposed an algorithm based on the channel feature 
of orientated gradient (CFOG) [29], and Fan et al. [48] proposed a 
pixel-level feature based on angle-weighted orientated gradient. Even 
though these methods demonstrate good robustness against NID, they 
are easily affected by geometric distortions. Therefore, the area-based 
methods [49] highly rely on prior information to coarsely eliminate 
the geometric distortions, including the scale change and image rota
tion. For example, CFOG requires using the rational function model 
(RFM) of remote sensing images to determine the approximate range of 
matching. 

Feature-based Matching: Many classical feature-based methods have 
been proposed in recent decades, such as scale-invariant feature trans
form (SIFT) [30], speeded up robust features(SURF) [31], affine-SIFT 
(ASIFT) [50], and oriented FAST and rotated BRIEF (ORB) [51]. These 
methods are designed for linear intensity changes, making them un
suitable for multimodal images. To adapt to NID, Xiang et al. [52] 
proposed the OS-SIFT method, which uses multi-scale Sobel and ROEWA 
filters to extract gradients and match them with the SIFT algorithm. 
Aguilera et al. [34] proposed a multimodal image feature descriptor, 
LGHD, based on multi-scale and multi-orientation Log-Gabor convolu
tional values. Based on LGHD, Li et al. [35] proposed the radia
tion–variation insensitive feature transformation (RIFT) algorithm. 
Instead of using the filtering responses, RIFT extracts the maximum 
index map (MIM) by searching the index of the maximum value among 
all orientations of filtering responses. It is proven to be more robust 
against NID. To resist rotational differences, RIFT builds an end-to-end 
circular structure with multiple index mappings to simulate different 
rotational differences between images. However, its performance de
grades dramatically at large rotations. Liu et al. [53] further improved 
RIFT by constructing a BRIEF descriptor based on MIM, improving ef
ficiency. The use of MIM increases the robustness to nonlinear intensity 
change, and it only encodes the index information rather than the 
complete filtering sequence with richer information. 
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Learning-based methods: The use of deep learning technology to 
achieve high-precision image matching has recently attracted much 
attention. SuperGlue [54] exploits self-attention and cross-attention 
between descriptors in graph neural networks for learned features and 
descriptors. Based on SuperGlue, LightGlue [55] adaptively adjusts the 
image matching model according to the matching difficulty, making it 
more efficient. COTR [56] proposes to use the TransFormer decoder and 
recursive amplification strategy to handle the matching task. LoFTR 
[41] proposes a detector-free dense matching algorithm based on the 
visual TransFormer model, which improves the ability to handle 
textureless regions. However, it uses a light TransFormer module to 
reduce the amount of computation, which results in LoFTR being subject 
to incorrect diffusion of attention [57]. Towards this, AspanFormer [58] 
introduces a Transformer-based detector-free matcher that is built on 
the hierarchical attention structure and can adjust attention span in a 
self-adaptive manner. Matchformer [59] employs a lightweight decoder 
with multi-scale features to reduce computation and uses cross-attention 
to improve robustness, improving the matching performance. These 
methods use natural vision images, like the datasets, Hpatches [60], 
ScanNet [61], and MegaDepth [62], and are not specifically designed for 
multimodal images. To treat multimodal images explicitly, Hybrid [63] 
proposes a new convolutional neural network (CNN) architecture that 
utilizes Siamese CNN and dual non-weight-sharing CNNs to tightly 
couple the generated feature detectors with the feature descriptors and 
obtains good results in VIS–NIR cross-modal scenarios. RedFeat [64] 
recouples the independent constraints of feature detection and match
ing, and proposes a super-detector with a large receptive field and a 
learnable non-maximal suppression layer, realizing four cross-modal 
scene matching. SemLA [42] introduces semantic information to 
constrain and guide the matching process. However, Hybrid, RedFeat, 
and SemLA cannot handle large rotation between images. After all, only 
a few image matching methods are focused on the image matching of 
multimodal images currently, and the performance and generalizability 
of these methods are still limited. 

In summary, even though much effort has been made into the 
effective matching of multimodal images, it is still a challenging prob
lem caused by the NID and the geometric distortions [65]. Most current 
methods focus on tackling the NID, ignoring geometric distortions. A 
few studies [66] try to achieve rotation invariance by using image 
gradient or intensity information to estimate a primary orientation for 
each feature. However, both image gradient and intensity are unstable 
because of the NID. Besides, there may be many false matches in the 
obtained matches even if strict parameters are set for the traditional 
error elimination method. In light of these problems, we propose a novel 
primary orientation estimation method that is not insensitive to image 
modalities and introduces the image pyramid strategy to combat scale 

change. Besides, we found that the global information (scale, rotation, 
position) of initial matches can effectively reduce incorrect matches 
caused by the similarity of local structures in multimodal images. We 
also designed a new POS inlier recovery method correspondingly. After 
integrating these improvements, POS-GIFT can obtain sufficient 
matches with high credibility under complex nonlinear intensity, scale, 
and rotation change circumstances. 

3. The POS-GIFT method 

As shown in Fig. 1, our method consists of four main steps. First, we 
build image pyramids on the reference image and sensed images to 
release the effect of scale change. Then, we generate a phase congruency 
(PC) [67] map based on the multi-scale and multi-orientation filtered 
images obtained with a Log-Gabor filter, and detect distinctive feature 
points on the PC maps. After that, we construct a GIFT descriptor which 
includes primary orientation estimation to achieve orientation invari
ance. At last, we match the descriptors with a nearest neighbor matching 
method and refine the matches with the proposed POS strategy. 

3.1. Multiscale feature points detection 

Due to NID, it is challenging to detect repeated and highly distinctive 
features on multimodal image pairs. Previous studies [28] prove that the 
PC map can well keep the salient structures regardless of image mo
dalities. In this paper, we also extract the PC maps of each layer image in 
the image pyramid first and then detect feature points on them with the 
FAST [68] algorithm. Moreover, we apply the pyramid strategy to tackle 
scale change. Specifically, two octaves of pyramid images are generated. 
The first octave is generated by conducting a sequence of 
down-sampling and Gaussian smoothing processes on the original 
image. The second octave is constructed the same as the first octave, and 
the only difference is the base image is obtained by down-sampling the 
original image with a scale factor of 1.5. 

Fig. 2 presents the detected feature points on a pair of an optical 
image and a depth image. We can see that the PC map can well keep the 
image structure regardless of different image modalities, and a large 
amount of repeated feature points are evenly distributed on the two 
images. 

3.2. GIFT descriptor 

In this section, we present a novel robust feature descriptor for 
multimodal images, which can effectively work with any angle of image 
rotation regardless of image modalities. In addition, we label the feature 
point being processed as the target point. The construction of the 

Fig. 1. The flowchart of the POS-GIFT.  
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descriptor involves four steps: (1) build an LG feature; (2) sample evenly 
distributed neighboring points; (3) construct a Gaussian weight feature 
(GFP)of each sampled point; (4) estimate the primary orientation, 
reorder of these features accordingly, and integrate them in a specific 
sequence to generate a rotation-invariant feature descriptor for the 
feature point. 

3.2.1. LG feature 
Note that multi-scale and multi-orientation filtered results have been 

obtained in the feature detection process. To comprehensively describe 
the feature in orientation, we sum up the filtered results across all scales 
for each orientation, which is helpful for the following primary orien
tation estimation but may lose the scale information of the multi-scale 
Log-Gabor filtered images [53]. As a result, a feature vector with a 
dimensional of a pre-defined number of orientations can be obtained for 
each point. To be simple, we call it as LG feature. The construction of LG 
features can be represented by the following equation. 

LG(x, y) =
∑

s
Aso(x, y) (1)  

where Aso is the filtering feature of the image by the Log-Gabor filter 
with a scale of s and direction o. Aso exhibits symmetry, meaning that A 
at a degrees is exactly identical to A at (a+180) degrees. To avoid 
redundancy, we exclusively construct multi-directional Log-Gabor fil
ters within the range of [0◦, 180◦). In this paper, we respectively set s to 
4 and o to 6, then the LG feature has six layers, each of which integrates 
all the scaled Log-Gabor filter information in one orientation. 

3.2.2. Points sampling pattern 
Compared with a single point, the image structure can be better kept 

across image modalities. To capture image structure, we adopt a point 
sampling pattern analog to the human vision system. Some research [69, 
70] has revealed that the retina is densely populated with photoreceptor 
cells that convert light signals into neural signals. As illustrated in Fig. 3 
(a), the human retina can be partitioned into distinct regions, with 
photoreceptor cells in each region exhibiting varying sensitivities to 

light signals. To replicate this sensitivity to image intensity, we assign 
Gaussian kernels with varying sizes to sampling points in different lo
cations. The detailed point sampling process is illustrated in Fig. 3(b), 
which can be described as follows. First, we generate n1 concentric 
circles with various radii around the target point. Next, each circle is 
divided into n2 equally spaced orientations, and a point is sampled for 
each orientation on each circle. In total, n1*n2 evenly distributed points 
are sampled, and these sampled points, together with the target point, 
form the proposed point sampling pattern. Large experiments (Section 
4.2) reveal that good performance can be achieved when n1=3, which is 
consistent with the retinal region structure depicted in Fig. 3(a). The 
radius of concentric circles can be calculated according to the following 
equation. 

Pi+1 = Pi + P1 ∗ i (2)  

where P1, Pi, and Pi+1 represent the radii of the first, i-th, and (i + 1)-th 
concentric circles, respectively. 

Fig. 2. The process of feature detection on a pair of multimodal images. (a) An optical image; (b) The generated PC map of (a); (c) The detected feature points on (b); 
(d) The corresponding depth map of (a); (e) The generated PC map of (d); (f) The detected feature points on (e). 

Fig. 3. Our point sampling pattern. (a) shows the distribution of photoreceptor 
cells in the human visual system; (b) the blue and red dots respectively repre
sent the sampled and target points, and the blue dashed circles represent their 
sampling neighborhoods. 
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3.2.3. Gaussian weight features of the sampled points (GFPs) 
In this section, we build a feature vector for each sampled point 

based on the multi-scale and multi-orientation filtering results. To fully 
apply the multi-orientation filtering results, we design a new encoding 
method called Gaussian weighting (GAUSS), as shown in Fig. 4. Essen
tially, GAUSS integrates the LG features in the neighborhood of the 
sampled point to form a feature vector to describe the sampled points. 
To be simple, we refer to the feature vector of a sampled point as GFP, 
which is constructed as follows.  

1) We first determine a local circular area for each sampled point. To 
utilize more neighborhood information, the radius of the circular 
area is determined by the distance between the sampling point and 
the target point. The smaller the distance, the smaller the sampling 
radius, and vice versa. The sampling radius can be calculated with 
the following equation. 

Ri =
Pi

2
(3)   

where Ri represents the sampling radius of the sampled point, ⌈.⌉is a 
ceiling function, Pi represents the radius of the ith concentric circle. 
Specifically, the sampling radius of the target point is equal to R1.  

1) For each circular area, we extract the LG features of the points within 
the sampling area and build a Gaussian kernel whose radius is equal 
to the sampling radius with the following equation. 

Gauss(x, y, σ) = 1
2πσ2 exp

(

−
(x2 + y2)

2σ2

)

(4)   

where Gauss(x, y, σ) represents the Gaussian kernel with a variance of σ.  

1) We integrate the LG features in the local area to form the GFP feature 
for each sampled point (as shown in Fig. 5). Each layer of the LG 
features is separately added according to the weights calculated 
based on the constructed Gaussian kernel. In detail, the GFP can be 
calculated as follows. 

GFPi,j =
[
Vi,j,1;Vi,j,2;…;Vi,j,o

]
(5)   

where (i, j) represents the index of concentric circle and orientation for 
the sampled point, and o is the number of filter orientations. 

Vi,j,o =
∑

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x− xp)
2
+(y− yp)

2
<Ri

√
Gauss

(
x − xp, y − yp, σi

)
∗ LG(x, y, o) (6)  

σi = a ∗ Ri + b (7)  

where (xp, yp) and Ri represents respectively the coordinates and sam
pling radius of the sampled point, a and b are constants, with an 
empirical value of 0.15 for a and 0.35 for b, σi is the Gaussian kernel 
variance of the sampling point located at the ith concentric circle. Spe
cifically, the Gaussian kernel variance of target point is equal to σi. 

3.2.4. Rotation-invariant feature descriptor 
Image rotation is inevitable in most cases, and it is a bottleneck 

problem for current multimodal image matching methods due to the 
ineffective estimation of primary orientation caused by NID. We deeply 
exploit the characteristics of the LG features under image rotation and 

Fig. 4. The detailed GFP construction process for the red sampled point. (a) Multi-scale and multi-orientation Log-Gabor filtered results; (b) LG feature maps 
constructed from summing up the filtered results across all scales for each orientation; (c) The construction process of our proposed GFP feature, which integrates the 
multi-orientation filtering responses in a local neighborhood with a Gaussian weight. 

Fig. 5. Gaussian weight features of all sampled points (GFPs). The arrows in six 
directions represent the six dimensions of GFP, and the length of the arrows 
reflects the magnitude of the values in each dimension. 
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found that the change of LG features meets a certain pattern. As shown 
in Fig. 6, the structure of image content represented by the norm values 
remains consistent when the image is rotated, and this gives us the 
possibility to find the primary orientation. However, we can also see that 
the LG feature map cannot be converted to the same as that of the LG 
feature map without rotation by simply rotating the LG feature map 
(Fig. 7). As displayed in Fig. 8, the orientation of the multi-orientation 
filter is fixed while the image is rotated, so we need to change the 
order of the filter sequences according to the rotation angle corre
spondingly as well. Fortunately, even though the order of the values of 
the sequence is changed, the norm values computed from the all- 
orientation filter response remain unchanged (Fig. 6). Based on the 
above analysis, we first use the norm map to estimate the primary 
orientation, then modify the order errors and rotation errors of LG fea
tures to achieve rotation invariance. Specifically, the norm value of the 
LG feature can be calculated as follows. 

NormLG(x, y) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑O

i=1
LG(x, y, i)2

√
√
√
√ (8)  

where O represents the orientation number of the Log-Gabor fil
ter, NormLG represents the norm information of LG features. 

Fig. 9 gives the detailed process of primary orientation estimation 
and GIFT feature descriptor construction.  

(1) As shown in Fig. 9(a), all the sampled points, excluding the target 
point, are divided into n2 groups according to their orientation, 
and each group contains n1 points.  

(2) For each group, we concatenated the GFPs for the n1 sampled 
points and concatenated them in a from-inside-to-outside order to 
form a vector with a dimension of n1×6 (Fig. 9(b)). We calculate 
the norm of the created vectors and find the vector with the 
largest norm, and take the orientation corresponding to the 
largest norm as the primary orientation. This process can be 
expressed in the following equation. 

OriFeature = argmax
j∈{1,2..n2}

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

i

⃒
⃒GFPi,j

⃒
⃒2

√

(9)   

where OriFeature represents the estimated primary orientation, |GFPi,j|

represents the norm of GFP for the sampled point located at the ith circle 
and jth orientation.  

(1) If the value of the second largest norm is larger than 80 % of that 
of the largest norm, the corresponding orientation is taken as the 
second primary orientation, and building a feature descriptor for 
this direction is in the following steps. This strategy can increase 
the robustness against image rotation and improve the matching 
success.  

(2) After obtaining the primary orientation, we further modify the 
order of the orientation of the Log-Gabor filter, which can be 
done by simply changing the orders of the initial filtering results 
instead. Specifically, we set the primary orientation as the start 
orientation of the Log-Gabor filters and change the order of the 
filter results correspondingly. As a consequence, the order of el
ements in GFP has changed accordingly. Moreover, Aso is 
consistent before and after rotation by 180◦. Accordingly, the 
index of the first element in GFP can be calculated by the 
following equation. 

IFE =

{
OriFeature, OriFeature ≤ O

OriFeature − O, OriFeature > O (10)   

where O represents the orientation number of the Log-Gabor filter, IFE is 
the index of the first element of GFP. Table 1 gives an example of the 
modification of the indices of the elements in GFP when n2 = 12, O = 6.  

(1) Note that the primary orientation has been estimated. We 
concatenate the GFPs of all sampled points to form the feature 
descriptor (Fig. 9(e)). First, the GFPs in each group are concate
nated from insider to outsider, and the vector of 6*n1 is obtained. 
Then, we concatenated the obtained vectors of the n2 groups from 
the primary orientation clockwise, appended the GFP of the 
target point to the end, and a 6*(n1*n2+1) vector is achieved, 
which is taken as the feature vector for a feature point. Large 
experiments showed that a good performance can be achieved 
when the values of n1 and n2 are set as 3 and 12, respectively. As a 
consequence, the proposed feature descriptor is a 222-dimen
sional vector. 

3.3. Inlier recovery strategy based on position-orientation-scale guidance 
(POS) 

To fulfill the matching task, we first calculate the distance between 
the constructed feature descriptors, and the point pair with the nearest 
distance is deemed as a match. Then, we use the fast sample consensus 
algorithm(FSC) [71] to further refine the matches and obtain the affine 
transformation matrix M. However, there are still incorrect matches in 
the obtained matches, especially in the areas with similar structures and 
texture-less areas, considering that our feature descriptor is designed 
based on the structural information to tackle the NID. 

Towards this, we propose a position-orientation-scale guided inlier 
recovery strategy (as shown in Fig. 10), which uses global information 
from the initial matching to guide the matching process. By constraining 
the matching range and modifying the scale and primary orientation 
information of feature points, the matching performance, including the 
number of correct matches and matching accuracy, is significantly 
improved. 

Then, we further decompose M with the following equation. 

Fig. 6. The effect of rotation on the norm map of LG features. (a) The original 
image; (b) The norm map of (a); (c) is obtained by rotating (b) counterclockwise 
by 150◦; (d) is obtained by rotating (b) counterclockwise by 150◦; (e) The norm 
map (d); (f) The absolute of the difference map by subtracting (c) from (e). 
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(11)  

where T, R, S, and H respectively represent the translation, rotation, 
scaling, and shearing components, respectively. θ is the rotational dif
ference, Sx represent the scale difference in the X direction, Sy represent 
the scale difference in the Y direction, s is the shear coefficient, and t =
0. 

By deforming (11), we can obtain simultaneous equations as follows. 

⎧
⎪⎪⎨

⎪⎪⎩

a = Sx ∗ cosθ − t ∗ Sy ∗ sinθ

b = Sx ∗ sinθ + t ∗ Sy ∗ cosθ

c = s ∗ Sx ∗ cosθ − Sy∗sinθ

d = s ∗ Sx ∗ sinθ + Sy∗cosθ

(12) 

Finally, the rotation θ and scale differences Simage of the image pair 
can be calculated with the following equations. 

θ = arctan
(

b
a

)

(13)  

Sx =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2 + b2

√
(14)  

Sy =
a ∗ d − b ∗ c

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2 + b2

√ (15)  

Simage =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

S2
x + S2

y

√

(16) 

Based on the obtained M, θ, and Simage, the details of the position, 
orientation, and scale guidance are elaborated as follows. 

Position guidance: Based on the initial matches, the affine trans
formation matrix M between the images is estimated first, then the 
feature points on the reference image are mapped to the sensed image. 
Each feature point on the referenced image is only matched to the pre
dicted point, and the K points nearest to the predicted point on the 
sensed image, the default value of K is 20. By restricting the search range 
of the matching area, the possibility of false matching can be largely 
reduced. 

Orientation guidance: Based on the initial matching results, we also 
get the rotation difference θ between the images. Therefore, we set the 
primary orientation of the reference image to 0 and the primary orien
tation of the target image to θ, as shown in Fig.10(d). By adjusting the 
primary orientations of all feature points in two images, the influence of 
principal orientation estimation on matching performance is eliminated. 

Fig. 7. The impact of rotation on LG features. (a) is an aerial image; (b) is obtained by rotating (a) counterclockwise by 60◦; (c) is the generated LG feature maps of 
(a) in six orientations; (d) is obtained by rotating (c) counterclockwise by 60◦; (e) is obtained by modifying the order of elements of the LG features based on the 
orientation angle; (f) is the generated LG feature maps of (b) in six orientations. 

Fig. 8. The effect of rotation on multi-orientation Log-Gabor filters when o is 6. The arrows represent the multi-orientation filters. Given that the Log-Gabor filtering 
results of the orientation of a degrees are the same as that of a + 180 degrees, we only used the orientations of filters marked in blue, and the ones marked in yellow 
are calculated correspondingly. (a) The image and the orientations of Log-Gabor filters in the initial state; (b) the image is rotated clockwise by 60◦ while the 
orientations of Log-Gabor filters are kept unchanged based on the initial state; (c) the image and the orientations of the Log-Gabor filters are both rotated clockwise 
by 60◦ on the basis of the initial state. 
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To reduce the computational complexity, we align the primary orien
tation of the image to the nearest 30-degree multiple, which enables us 
to rotate the feature points by only changing the order of the elements in 
the feature vector without regenerating the descriptors. 

Scale guidance: Based on the initial matching results, we calculate the 
scale difference Simage between the two images. Then, we adjust the P1 in 
Eq. (2) and recreate the feature descriptor with scale invariance. 

4. Experimental results 

To demonstrate the effectiveness of the proposed methods, we 

Fig. 9. The flowchart for constructing the GIFT descriptor. (a) shows the distribution of sampling points, which are grouped by orientation; (b) shows the 18-dimen
sional feature vector built by concatenating the features of the three points in the same direction; (c) calculates the norm value of the 12 constructed orientation 
vectors and takes the orientation (marked green) with the largest norm as the primary orientation; (d) shows the process of adjusting the element order of the GFP 
according to the primary orientation of 4; (e) concatenate the feature vectors of all the orientations from the primary orientation clockwise and append the GFP of the 
target point at the end to form the complete feature descriptor. 

Table 1 
The correspondence between the element order of GFP and the primary 
orientation. The red number represents IFE in Eq. (10).  

The primary orientation The element order of GFP 

1,7 ཛ1,2,3,4,5,6ཝ 
2,8 ཛ2,3,4,5,6,1ཝ 
3,9 ཛ3,4,5,6,1,2ཝ 
4,10 ཛ4,5,6,1,2,3ཝ 
5,11 ཛ5,6,1,2,3,4ཝ 
6,12 ཛ6,1,2,3,4,5ཝ  

Fig. 10. The proposed position-orientation-scale (POS) inlier recovery strategy. The arrows in the figure represent feature point information: the starting point, 
direction, and length of the arrow represent the position, orientation, and scale information of the feature point, respectively. (a) is the multimodal image pair to be 
matched; (b) displays initial extracted feature points; (c) presents the feature points after scale modification on the basis of (b); (d) shows the feature points after 
primary orientation modification from (c); and (e) illustrates the position constraint where the searching area is marked with a mask. 
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designed four groups of experiments. Firstly, we conduct a parameter 
study to test the sensitivity to different parameters and find the proper 
parameters. Secondly, we prove the superiority of our method by 
comparing the qualitative and quantitative results of our method with 
that of eight latest state-of-the-art multimodal image matching methods, 
including five handcrafted feature-based matching methods, PSO-SIFT 
[72], OS-SIFT [52], LGHD [34], RIFT [35], LNIFT [7], and three deep 
learning-based matching methods, RedFeat [64], MatchFormer [59], 
SemLA [42], on various multimodality of images. In addition, we also 
add the method of POS-GIFT without the POS strategy as a comparative 
method, which is named GIFT. For handcrafted feature-based methods, 
the author-provided source codes and parameters (Table 2) are applied; 
for the deep-learning methods, the author-provided pre-trained models 
and default parameters are applied (Table 2). Specifically, we lowered 
the thresholds of feature detection for PSO-SIFT and OS-SFIT to obtain 
more feature points considering that insufficient feature points can be 
found with the pre-defined parameters. Thirdly, we show the strong 
rotation invariance of our method on a large number of images with 
different image rotations. Lastly, we evaluate the running efficiency of 
POS-GIFT, OS-SIFT, LGHD, PSO-SIFT, RIFT, and LNIFT in detail. 

For quantitative evaluation, three measure metrics are employed, 
which are the number of correct matches (NCM), success rate (SR), and 
root mean square error (RMSE). NCM reflects the strength of the 
matching ability; RMSE reflects the matching accuracy, with lower 
RMSE indicating higher accuracy; SR reflects the robustness of the 
matching algorithm, with higher SR indicating greater robustness. 
Moreover, we consider the matching point with a distance greater than 
five pixels from the corresponding ground truth point an incorrect match 
and the image pair with NCM smaller than four as a matching failure. 
The RMSE, and SR are calculated as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
C

∑C

i=1
(x′

i − x″
i)

2
+ (y′

i − y″
i)

2

√
√
√
√ (17)  

SR =
Nsuccess

Ntotal
∗ 100 (18)  

where C represents the number of correct matched points, (x′
i, y′

i) and (x″
i, 

y″
i) are respectively the coordinates of the matched point and the cor

responding ground truth point; Nsuccess and Ntotal represent the number of 
successfully matched image pairs and the number of image pairs used for 
matching, respectively. For each image pair, 10–20 evenly distributed 

correspondences are employed as the ground truth. 

4.1. Datasets 

We use three groups of multimodal image datasets from the areas of 
remote sensing, medicine, and computer vision. Dataset 1 consists of 6 
types of remote sensing image pairs, which are optical-optical images 
with different time differences, optical-SAR images, optical-map images, 
optical-infrared images, optical-depth images, and day-night images. 
Each type contains 10 image pair, taken from [8]1 and [73]2 Dataset 2 
consists of 6 types of medical image pairs, which are 
Magnetic-Resonance-Image (MRI)–Single-Photon-Emission-Computed- 
Tomography (SPECT) images, Proton-Density-Weighted (PD)– 
T1-weighted (T1) images, PD–T2-weighted (T2) images, retina images 
acquired by different angiography techniques, SPECT–CT, and T1–T2 
images. The type of retina-retina contains 23 image pairs, and the other 
types include ten image pairs. Specifically, the T1, T2, and PD images 
are given by [74]3; the MRI, SPECT, and CT images are obtained from 
Harvard University4; the retina images are from [75]. Dataset 3 consists 
of 235 RGB–NIR image pairs with 9 scenes: country, field, forest, indoor, 
mountains, old buildings, street, urban, and water, which are taken from 
[76]5 We manually labeled 10–20 ground point pairs for each image pair 
and constructed the corresponding affine transformation matrix. These 
images differ in imaging mechanism, waveband, shooting time, usage, 
etc. Their detailed information is shown in Table 3. 

Datasets 2 and 3 contain different strengths and types of nonlinear 
intensity NID and image translation (NT), which can be used to test the 
robustness against NID, while Dataset 1 contains NID, image translation, 
scale change, and image rotation (NTSR), simultaneously, which can be 
used to evaluate the performance under NID and complex geometric 
distortions. To enrich the experimental data, we rectify the image pairs 
of Dataset 1 with the transformation estimated based on manually 
selected matches to eliminate scale change and image rotation. The 
rectified image pairs only involve NT. At the same time, we randomly 
add different extents of scale change ranging from 1/2 to 2 and image 
rotation spanning 0–360◦ to Datasets 2 and 3. To be simple, we name the 
datasets with NT as DataSet1NT, DataSet2NT, DataSet3NT, the datasets 
with NTSR as DataSet1NTSR, DataSet2NTSR, DataSet3NTSR. Representative 
image pairs and their matching results can be found in Figs.11–13. 

4.2. Parameter study 

In this section, we test the performance of POS-GIFT under different 
parameter settings. Most of the parameters come from the construction 
of feature descriptors, which are the number of concentric circles (n1), 
radius (P1), the number of directions (n2) per circle, and the number of 
nearest neighbors (K) in the POS strategy when constructing sampling 
points. For a fair comparison, we limit the maximum number of feature 
points to 5000 and only adjust the test parameter while keeping other 
parameters constant. Table 4 displays the detailed parameter settings 
and experimental results on 60 multimodal image pairs from 
DataSet1NT. 

As shown in Table 4, the different parameters have little effect on 
RMSE, which is maintained at around 1 pixel but has a significant impact 
on NCM. We varied n1 from 2 to 5, the optimal matching performance 
was achieved at n1 = 3. When the number of concentric circles exceeded 
3, the NCM decreased significantly. For P1, The maximum value of NCM 
was obtained when the radius of concentric circles P1 was set to 6. 
Additionally, NCM gradually increased with the increase in the number 

Table 2 
Detailed settings of nine methods.  

Method Parameters 

POS-GIFT Concentric circles number (n1): 3; The radius of the first concentric 
circles (P1): 6; The number of directions (n2) per circle: 12; The 
number of nearest neighbors (K) in the POS strategy: 20; The scale 
number of Log-Gabor filter: 4; The orientation number of Log-Gabor 
filter: 6. 

PSO-SIFT Initial variance: 1.6; Patch size: 24*scale; Descriptor size: 136; Edge 
threshold 31;Contrast threshold: 0.001. 

OS-SIFT Initial variance: 1.6; Patch size: 24*scale; Descriptor size: 136; 
Harris function threshold 0.001; Scale ratio: 

̅̅̅
23

√
. 

LGHD Patch size: 100; Descriptor size: 384; FAST mincontrast: 0.1; Scale 
ratio: 

̅̅̅
23

√
;Log-Gabor scale: 4; Log-Gabor orientation: 6. 

RIFT Patch size: 96; Descriptor size: 216;Fast mincontrast: 0.001; Log- 
Gabor scale: 4;Log-Gabor oritation: 6. 

LNIFT Patch size: 96; Descriptor size: 256; ORB edge threshold: 5; Filter 
windows size: s = 3. 

RedFeat Descriptor size: 128; Min/Max size: 100/1000; Scale ratio: 2 × 0.25; 
Keypoint number: 4096; Reliability threshold: 0.5; Repeatability 
threshold: 0.4. 

MatchFormer Backbone: “largela”; Image size: {640,480}; Scens: “outdoor ”; 
Resolution: (8,2). 

SemLA Match mode: "scene"; Image size: {640,480}; Semantic threshold γ: 
0.  

1 https://skyearth.org/publication/project/CoFSM/  
2 https://skyearth.org/publication/project/HOWP/  
3 https://brainweb.bic.mni.mcgill.ca/brainweb/  
4 http://www.med.harvard.edu/aanlib/home.html  
5 https://ivrlwww.epfl.ch/supplementary_material/cvpr11/index.html 
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of directions n2, possibly because a higher n2 value resulted in a denser 
distribution of sampling points, enabling the feature descriptor to reflect 
more details. However, when n2 exceeded 12, the increase in NCM was 

limited. For K, increasing the value of K can enlarge the searching range 
of the potential matched point, but may introduce incorrect matches. 
Conversely, decreasing the value of K will narrow the search range, 

Table 3 
The detailed information of the experimental datasets.  

Dataset1 Image type Optical Optical infrared Optical depth Optical map Optical SAR Day night 
Modal ID 1 2 3 4 5 6 
Number 10 10 10 10 10 10 
Size 500 × 271~992 × 602 

Dataset2 Image type MRI SPECT PD T1 PD T2 retina SPECT CT T1 T2 
Modal ID 7 8 9 10 11 12 
Number 10 10 10 23 10 10 
Size 256 × 256~640 × 640 

Dataset3 Imge type RGB-NIR 
scene Country Filed Forest Indoor Mountain Old building Street Urban Water 
Modal ID 13 
Number 34 39 11 14 47 28 11 20 31 
Size 509 × 768~1024 × 754  

Fig. 11. The qualitative comparison results of (a) OS-SIFT, (b) LGHD, (c) PSO-SIFT, (d) RIFT, (e) LNIFT, (f) RedFeat, (g) MatchFormer, (h) SemLA, (i) GIFT, (j) POS- 
GIFT on six typical image pairs of DataSet1NT and six typical image pairs of DataSet1NTSR. For each modality pair, the top row and the bottom row show the results of 
the images with NT and NTSR, respectively. The yellow and red line represents the correct and incorrect matches, respectively. 
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which can ensure high accuracy. However, a relatively precise initial 
matching position is required for the POS strategy. Experiments show 
that the largest NCM with high precision is achieved when K is set to 20. 
Therefore, based on the above analysis, we set the default parameters of 
POS-GIFT as n1 = 3, P1 = 6, n2 = 12, and K = 20, and employed them in 
the following experiments. 

4.3. Qualitative and quantitative comparison experiments 

We first demonstrate the comparative visualization results 
(Figs. 11–13) accompanied by specific NCM of the ten methods on 30 
typical multimodal image pairs, with 15 different modalities of image 
pairs with NT selected from DataSet1NT, DataSet2NT, and DataSet3NT, 
and the corresponding 15 image pairs with NTSR selected from Data
Set1NTSR, DataSet2NTSR, and DataSet3NTSR. We can see that POS-GIFT 
and GIFT successfully matched all image pairs and obtained consider
able NCM on all the image pairs, no matter whether the image pair 
involved NTSR or not. In addition, POS-GIFT outperforms GIFT. LGHD, 
PSO-SIFT, and OS-SIFT matched 9, 10, and 12 out of the 15 image pairs 
with NT but just matched 0, 4, and 6 out of 15 image pairs with NTSR, 

and the NCMs are small for the matched image pairs. This reveals that 
these three methods have some robustness against NID but are very 
sensitive to NTSR. RIFT and LNIFT present good robustness against NID, 
successfully matched all 15 image pairs with NT, and obtained larger 
NCM compared with LGHD, PSO-SIFT, and OS-SIFT. However, they are 
also subjected to NTSR, matching 5 and 10 pairs of the 15 image pairs 
involving large geometric changes, respectively. The three deep learning 
methods, RedFeat, Matchformer, and SemLA, successfully matched 13 
out of the 15 image pairs with NT but failed to match the MRI-SPECT 
and SPECT-CT pairs, indicating that they can only tackle specific mo
dalities differences. Moreover, their performance decreased dramati
cally on the image pairs with NTSR, only got a few matches on the image 
pairs with slight scale changes of SAR-optical and map-optical, and 
failed to match all the other image pairs. After all, POS-GIFT performs 
the best, successfully matching all 30 image pairs with substantially 
correct matches achieved. 

Tables 5 and 6 present detailed matching results for DataSet1NT, 
DataSet2NT, DataSet3NT, DataSet1NTSR, DataSet2NTSR, and DataSet3NTSR. 
Generally, consistent results to the visualization results of selected 
image pairs are obtained. 

Fig. 12. The qualitative comparison results of (a) OS-SIFT, (b) LGHD, (c) PSO-SIFT, (d) RIFT, (e) LNIFT, (f) RedFeat, (g) MatchFormer, (h) SemLA, (i) GIFT, (j) POS- 
GIFT on six typical image pairs of DataSet2NT and six typical image pairs of DataSet2NTSR. For each modality pair, the top row and the bottom row show the results of 
the images with NT and NTSR, respectively. The yellow and red line represents the correct and incorrect matches, respectively. 
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With respect to the results on the image pairs with NT, we can see 
that OS-SIFT and PSO-SIFT struggle to match the optical–SAR, day- 
night, MRI–SPECT, and SPECT–CT image modalities and obtains a 
small NCM on the other image modalities, showing limited resistance 
against complex NID. LGHD achieves a high SR of up to 90 % in the 
Optical–Optical, Optical–Infrared, Optical–Depth, Optical–SAR, and 
RGB–NIR image modalities, but the corresponding NCM was low, and 
the RMSE exceeds three pixels. Plus, it fails to match the Optical-Map, 
MRI–SPECT, PD–T1, Retina–Retina, SPECT–CT, and T1–T2 image mo
dalities with complex NID. Through normalizing the multimodal images 
to reduce NID, LNIFT achieves a large SR above 90 % in the eight image 
modalities of Optical–Optical, Optical–Infrared, Optical–Depth, Optical- 
Map, PD–T1, PD–T2, Retina–Retina, T1–T2, and the metrics of NCM and 
RMSE of LNIFT are better than that of LGHD. RIFT outperforms LNIFT in 
SR in almost all modalities except for Optical-Map, thanks to the utili
zation of the radiometrically invariant maximum index map (MIM). The 
RMSE achieves around three to four pixels, even within two pixels on the 
RGB–NIR image pairs, demonstrating good radiometric invariance. 
However, the average NCMs of the Day–Night, MRI–SPECT, and 

SPECT–CT image modalities are 66, 43, and 11, which are relatively 
fewer. Compared to the handcrafted methods, RedFeat, MatchFormer, 
and SemLA successfully match most image modalities and achieve 
higher NCM and RMSE than RIFT but fail to produce any correct 
matches in the most challenging MRI–SPECT and SPECT–CT modalities. 
Additionally, there are a large number of incorrect matches in the 
matching results, with incorrect matching rates of 29 %, 35 %, and 27 % 
for RedFeat, MatchFormer, and SemLA. This suggests that deep learning 
methods have notable limitations, particularly when dealing with 
certain types of NID. 

When NTSR is also involved in the multimodal image pairs, all 
comparative algorithms show varying degrees of performance degra
dation. Although OS-SIFT and PSO-SIFT consider scale change and 
rotation, the average SR of OS-SIFT in all modality pairs decreases from 
58.1 to 23.4 while that of PSO-SIFT decreases from 65.5 to 35.1, and 
their average NCM decreases to 23 and 46, respectively. LNIFT adopts 
the orientation estimation approach of ORB, but its performance is still 
susceptible to rotation, with the average SR reduces from 85 % to 36.9 
%, and the average NCM reduces from 195 to 60. Among them, it fails 
entirely in optical–SAR and SPECT–CT image modalities. Due to the lack 
of scale and orientation estimation modules, LGHD can only resist small- 
scale change and image rotation below 20◦. It matches the four modality 
pairs of Optical–Infrared, Optical–Depth, Day–Night, and RGB–NIR, 
where the SRs are all less than 10%. When the rotation angle is greater 
than 30◦, the performance of RedFeat, Matchformer, and SemLA de
creases sharply. Specifically, the average NCM of the four methods re
duces by more than 50 %, and their SRs decrease from more than 80 % to 
less than 30 % at all image modalities except for the PD-T2 and T1–T2, 
which drops to 40 %. 

On the contrary, POS-GIFT is significantly superior to the other nine 
compared methods in all metrics on all the image datasets with or 
without scale and rotation distortion. For the multimodal image pairs 
with NT, POS-GIFT obtains large NCMs by several to tens of times than 
the other five handcrafted feature methods in all modalities. Moreover, 
POS-GIFT demonstrates remarkable superiority over deep learning 
matching methods, achieving absolute advantages in the challenging 
MRI–SPECT and SPECT–CT modalities and significantly improving NCM 
by 60–400 % in the six image modality pairs from the remote sensing 
area while increasing NCM by approximately 30 % in the RGB–NIR 
image modalities. Even GIFT excels with over 100 correct matches, 
outperforming the five comparative handcrafted feature matching 

Fig. 13. The qualitative comparison results of (a) OS-SIFT, (b) LGHD, (c) PSO-SIFT, (d) RIFT, (e) LNIFT, (f) RedFeat, (g) MatchFormer, (h) SemLA, (i) GIFT, (j) POS- 
GIFT on three RGB-NIR image pairs of DataSet3NT and three RGB-NIR image pairs of DataSet3NTSR. For each modality pair, the top row and the bottom row show the 
results of the images with NT and NTSR, respectively. The yellow and red line represents the correct and incorrect matches, respectively. 

Table 4 
The performance of POS-GIFT under different parameter settings.   

Parameter setting NCM↑ RMSE↓ 

n1 P1 n2 K 

n1 2 6 12 20 1638 1.15 
3 6 12 20 1720 0.94 
4 6 12 20 1586 0.94 
5 6 12 20 1295 0.93 

P1 3 4 12 20 1552 1.18 
3 5 12 20 1648 0.97 
3 6 12 20 1720 0.94 
3 7 12 20 1706 0.94 
3 8 12 20 1703 0.93 

n2 3 6 8 20 1666 1.13 
3 6 10 20 1714 1.02 
3 6 12 20 1720 0.94 
3 6 14 20 1725 0.93 
3 6 16 20 1727 0.93 

K 3 6 12 16 1763 0.98 
3 6 12 18 1747 0.96 
3 6 12 20 1720 0.94 
3 6 12 22 1700 0.96 
3 6 12 24 1685 0.95  

Z. Hou et al.                                                                                                                                                                                                                                     



Information Fusion 102 (2024) 102027

13

methods and surpassing the deep learning methods in the Optical-Map, 
MRI–SPECT, PD–T2, and RGB–NIR image modalities. Besides, GIFT and 
POS-GIFT exhibit good rotation and scale invariance, effectively 
matching all image pairs even under complex geometric distortions. The 
average RMSE of GIFT is 2 pixels, while that of POS-GIFT reaches a very 
high accuracy of 1.2 pixels. Additionally, the NCM of POS-GIFT remains 
unchanged. The outstanding performance of POS-GIFT is attributed to 
multi-scale feature detection, robust and accurate primary orientation 
estimation, and the POS strategy. These large amounts of experiments 
indicate that POS-GIFT can be applied to various sources of multimodal 
images with different modalities. 

4.4. Performance with respect to rotation 

In this section, we demonstrate the robustness of our method for 
image rotation. In terms of image rotation, we select an optical-map 
image pair and a retina-retina image pair from the experimental data
sets and manually modify the rotation difference between the images 
from 0 to 360◦. Considering that the primary orientation method and the 
proposed POS strategy both affect the performance against rotation, we 
testify these two modules separately to fully evaluate the proposed 
method. Moreover, we introduce three other primary orientation esti
mation methods, GIFT-Gradient, GIFT-Centroid, and GIFT-Phase, as a 
comparison to prove the effectiveness of the proposed methods. To be 
fair, all the other steps are the same except for the primary orientation 
estimation method during experiments. The definitions of the compar
ative methods are as follows.  

• GIFT-Gradient uses a gradient orientation histogram [30] to estimate 
the primary orientation. Similar to SIFT, we first calculate the 
gradient directions and magnitudes of pixels located at the neigh
borhood of the feature point. Then, a gradient histogram is con
structed, and the direction bin with the largest value is taken as the 
primary orientation. 

• GIFT-Centroid adopts the method of ORB [51] to estimate the pri
mary orientation. Specifically, GIFT-Centroid computes a centroid 
point in a local area of the feature point on the PC map, and the 
direction of the line connecting the centroid point and the feature 
point center is taken as the primary orientation.  

• GIFT-Phase uses the method of LHOPC [77] to estimate the primary 
orientation. The process can be represented by the following 
equations: 

V =
∑

s
Osocos(o) (19)  

H =
∑

s
Ososin(o) (20)  

OriPhase = tan− 1H
V

(21)   

where Oso is the response of the Log-Gabor odd-symmetric filter with 
scale s and orientation o, and OriPhase represents the estimated phase 
direction. 

Figs. 14–16 give the comparative quantitative results with different 

Table 5 
The detailed matching results of ten algorithms on DataSet1NT, DataSet2NT, and DataSet3NT.  

Modality pair Metric OS-SIFT LGHD PSO-SIFT LNIFT RIFT RedFeat MatchFormer SemLA GIFT POS-GIFT 

Optical 
Optical 

NCM 33 256 102 111 226 312 1456 833 557 2471 
RMSE 3.8 3.7 2.9 3.0 2.6 2.4 2.1 2.7 2.0 0.9 
SR(%) 70.0 90.0 60.0 100 100 100 100 100 100 100 

Optical 
Infrared 

NCM 47 75 80 146 250 756 653 1232 830 2374 
RMSE 3.6 3.3 1.7 3.2 2.4 2.6 2.5 2.4 1.7 0.8 
SR(%) 90 90 100 100 100 100 100 100 100 100 

Optical 
Depth 

NCM 18 102 26 106 114 264 636 631 284 2063 
RMSE 3.6 4.4 3.2 3.4 3.3 2.8 2.8 2.9 1.8 0.9 
SR(%) 90 100 60 90 100 100 100 100 100 100 

Optical 
Map 

NCM 30 13 76 130 119 373 483 568 1149 2555 
RMSE 3.9 4.9 1.7 2.8 2.6 2.6 2.7 3.0 2.1 0.9 
SR(%) 50 10 80 100 100 100 100 100 100 100 

Optical 
SAR 

NCM 15 82 13 69 87 110 292 382 257 1886 
RMSE 4.2 3.5 4.7 4.9 4.6 2.9 3.0 2.9 2.3 0.9 
SR(%) 30 90 30 50 90 100 100 100 100 100 

Day 
Night 

NCM 19 71 26 31 66 56 682 202 210 1303 
RMSE 4.9 3.6 3.6 4.6 4.0 2.9 2.9 2.8 2.2 1.0 
SR(%) 10 80 40 50 60 80 80 80 100 100 

MRI 
SPECT 

NCM 0 11 0 27 43 0 0 0 149 567 
RMSE 5.0 4.3 5.0 4.9 4.4 5.0 5.0 5.0 3.2 1.9 
SR(%) 0 60 0 70 70 0 0 0 100 100 

PD 
T1 

NCM 17 0 105 274 421 1248 1000 1028 464 1442 
RMSE 4.1 5.0 1.4 2.9 2.6 2.7 2.1 2.4 2.6 1.1 
SR(%) 70 0 100 100 100 100 100 100 100 100 

PD 
T2 

NCM 47 18 265 617 749 1944 3459 3257 2033 3894 
RMSE 3.0 1.0 1.2 1.9 2.2 2.5 1.7 1.8 1.7 1.0 
SR(%) 100 70 100 100 100 100 100 100 100 100 

Retina 
Retina 

NCM 21 20 89 140 411 333 851 703 1461 3059 
RMSE 4.6 2.9 2.1 3.3 2.5 2.7 2.8 2.9 1.8 0.9 
SR(%) 52 13 83 96 100 100 100 100 100 100 

SPECT 
CT 

NCM 0 0 0 14 11 0 0 0 140 470 
RMSE 5.0 5.0 5.0 4.6 3.9 5.0 5.0 5.0 2.5 2.0 
SR(%) 0 0 0 50 50 0 0 0 100 100 

T1 
T2 

NCM 136 0 209 447 688 2385 1604 2549 1234 2672 
RMSE 2.6 5.0 0.9 2.3 2.1 2.4 1.8 1.9 1.7 0.9 
SR(%) 100 0 100 100 100 100 100 100 100 100 

RGB 
NIR 

NCM 177 202 268 430 1097 1084 2688 2685 3397 3525 
RMSE 2.8 1.5 0.8 1.9 1.5 2.6 1.4 1.2 1.5 0.8 
SR(%) 93 93 98 100 100 100 100 100 100 100  
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primary orientation estimation methods, and Figs. 20–22 give the cor
responding qualitative results of Figs. 14–16. From the results, we can 
see that similar patterns are obtained for the two image pairs. The 
performance of GIFT-Gradient, GIFT-Centroid, and GIFT-Phase de
creases continuously with the increase of rotation angle, and it drops 
significantly when the angle difference is over 90◦, resulting in matching 
failure. Among them, GIFT-Gradient performs the worst due to the 
sensitivity of nonlinear intensity difference to distortion. GIFT-Phase 
and GIFT-Centroid perform relatively better but struggle at large 
image rotation. 

In comparison, GIFT not only obtains decent NCM but also maintains 
its performance without degradation as the rotation distortion increases, 

achieving rotation invariance at any angle. Additionally, we observed 
two periodic phenomena in the changing curve of the NCM of GIFT. 
Firstly, there is a significant periodicity of 90◦, and this is because the 
manual rotation process of an image will change the number of effective 
pixels of the resampled sense image, resulting in a periodicity of 90◦. 
Secondly, the small peak is at the integer multiples of 30◦. The reason is 
that the number of orientations of the Log-Gabor filter is 6, which means 
that the angular difference between adjacent filters is 30◦. When the 
rotation angle is a multiple of 30◦, the multi-directional filtering features 
of the two images are most similar, therefore obtaining the largest NCM. 

Figs. 17–22 give the comparative quantitative and qualitative results 
of POS-GIFT and GIFT. The above experiments have proven the 

Table 6 
The detailed matching results of ten algorithms on DataSet1NTSR, DataSet2NTSR, and DataSet3NTSR.  

Modality pair Metric OS-SIFT LGHD PSO-SIFT LNIFT RIFT RedFeat MatchFormer SemLA GIFT POS-GIFT 

Optical NCM 12 0 40 39 69 0 391 6 349 2253 
RMSE 4.2 5.0 1.7 4.2 4.9 5.0 3.0 2.9 1.8 1.0 
SR(%) 20.0 0.0 40.0 40.0 60.0 0.0 10.0 10.0 100.0 100.0 

Optical Infrared NCM 39 106 47 32 74 202 75 256 655 2402 
RMSE 2.7 4.5 1.8 4.9 4.2 2.8 3.4 2.8 1.8 1.1 
SR(%) 40.0 10.0 50.0 50.0 60.0 10.0 30.0 30.0 100.0 100.0 

Optical Depth NCM 15 33 14 30 78 209 450 192 264 1897 
RMSE 3.4 3.3 2.4 4.8 4.4 2.5 3.2 3.4 1.8 1.0 
SR(%) 20.0 10.0 30.0 40.0 30.0 10.0 30.0 20.0 100.0 100.0 

Optical Map NCM 12 0 29 22 36 200 175 260 1084 2688 
RMSE 4.2 5.0 1.6 4.2 4.5 1.6 2.3 2.2 1.7 0.9 
SR(%) 40.0 0.0 50.0 50.0 50.0 10.0 30.0 30.0 100.0 100.0 

Optical SAR NCM 8 0 7 0 15 26 88 46 235 1676 
RMSE 4.9 5.0 3.7 5.0 4.1 2.2 3.2 3.3 1.9 1.0 
SR(%) 10.0 0.0 10.0 0.0 70.0 10.0 30.0 20.0 100.0 100.0 

Day Night NCM 0 359 19 16 82 172 964 739 239 1366 
RMSE 5.0 2.3 2.3 3.3 3.9 2.3 2.3 2.4 1.9 1.2 
SR(%) 0.0 10.0 30.0 30.0 30.0 10.0 10.0 10.0 100.0 100.0 

MRI SPECT NCM 0 0 0 23 17 0 0 0 141 608 
RMSE 5.0 5.0 5.0 4.3 4.3 5.0 5.0 5.0 3.0 1.9 
SR(%) 0.0 0.0 0.0 10.0 60.0 0.0 0.0 0.0 100.0 100.0 

PD T1 NCM 0 0 39 125 116 757 226 167 156 1468 
RMSE 5.0 5.0 2.3 3.4 3.9 2.6 2.8 2.1 1.9 1.2 
SR(%) 0.0 0.0 50.0 50.0 70.0 20.0 30.0 20.0 100.0 100.0 

PD T2 NCM 19 0 121 137 176 466 398 237 1276 3550 
RMSE 2.9 5.0 1.0 3.3 4.2 2.1 2.9 1.8 1.7 1.0 
SR(%) 50.0 0.0 50.0 50.0 80.0 30.0 40.0 30.0 100.0 100.0 

Retina NCM 7 0 38 22 95 174 146 354 976 3116 
RMSE 4.2 5.0 2.3 4.2 4.3 2.8 3.0 2.7 1.8 1.0 
SR(%) 13.0 0.0 47.8 65.2 91.3 8.7 30.4 21.7 100.0 100.0 

SPECT CT NCM 0 0 0 0 0 0 0 0 141 420 
RMSE 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 2.8 1.9 
SR(%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 

T1 T2 NCM 40 0 94 127 226 792 251 360 852 2693 
RMSE 2.4 5.0 1.2 3.3 4.8 2.8 3.0 1.7 1.7 0.9 
SR(%) 50.0 0.0 60.0 60.0 60.0 30.0 40.0 20.0 100.0 100.0 

RGB NIR NCM 61 73 58 86 213 422 1218 914 1899 3201 
RMSE 2.3 3.0 1.2 2.7 2.4 2.4 2.3 2.8 1.7 1.0 
SR(%) 61.7 4.7 38.7 34.0 56.2 14.9 29.8 25.1 100.0 100.0  

Fig. 14. The NCM changing curves of GIFT, GIFT-Centroid, GIFT-Gradient, GIFT-Phase on an optical-map image pair with different angles of image rotation.  
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Fig. 15. The NCM changing curves of GIFT, GIFT-Centroid, GIFT-Gradient, and GIFT-Phase on a retina–retina image pair with different angles of image rotation.  

Fig. 16. The NCM changing curves of GIFT, GIFT-Centroid, GIFT-Gradient, and GIFT-Phase on an RGB–NIR image pair with different angles of image rotation.  

Fig. 17. The NCM changing curves of GIFT and POS-GIFT on an optical-map image pair with different angles of image rotation.  

Fig. 18. The NCM changing curves of GIFT and POS-GIFT on a retina–retina image pair with different angles of image rotation.  
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effectiveness of the proposed primary orientation method. Here, we can 
see that both GIFT and POS-GIFT can handle any angle of image rota
tion, revealing that the POS strategy can work well on multimodal im
ages with rotation. Similarly, we noticed the large periodicity of 90◦ and 
the "small peak" phenomenon of 30◦ in the NCM curve of POS-GIFT. 

4.5. Running time 

As shown in Table 7, we present the average running time of our 
proposed methods, POS-GIFT and GIFT, and the other five handcrafted 
methods, OS-SIFT, PSO-SIFT, LGHD, LNIFT, and RIFT, on DataSet1NT 

Fig. 19. The NCM changing curves of GIFT and POS-GIFT on an RGB–NIR image pair with different angles of image rotation.  

Fig. 20. The visualization results of Fig. 16 and Fig. 19. (a) GIFT-Centroid; (b) GIFT-Gradient; (c) GIFT-Phase; (d) GIFT;(e) POS-GIFT.  

Fig. 21. The visualization results of Fig. 17 and Fig. 20. (a) GIFT-Centroid; (b) GIFT-Gradient; (c) GIFT-Phase; (d) GIFT;(e) POS-GIFT.  

Fig. 22. The visualization results of Fig.18 and Fig. 21. (a) GIFT-Centroid; (b) GIFT-Gradient; (c) GIFT-Phase; (d) GIFT;(e) POS-GIFT.  
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with 60 pairs of multimodal images. All the experiments were conducted 
with the same configuration: Windows 10 64 professional system, Intel 
(R) Xeon(R) CPU E5-1650 v4@ 3.60 GHz, 32 GB RAM, Matlab 2022a 
development environment. 

We can see that OS-SIFT, GIFT, and POS-GIFT are at the same effi
ciency level, using the least time. PSO-SIFT cost the longest time. The 
time consumed by LGHD, LNIFT, and RIFT is moderate, while RIFT is 
significantly slower than the other two methods. The reason why OS- 
SIFT is fast is that it detects a relatively small number of feature 
points and is easy to fail, which will stop the time count. LNIFT con
sumes most of the time on rotating to direction gradient features to 
achieve rotation invariance. LGHD, RIFT, and GIFT all construct feature 
descriptors based on multi-scale and multi-orientation filtering results, 
but the different descriptor construction pattern leads to different effi
ciency. LGHD detects a MIM map on each scale of filtered image and 
builds the descriptor with histogram statistics, which are time- 
consuming. RIFT first added all scales of images and then constructed 
the feature descriptor on one MIM map. This strategy saves lots of time 
compared with LGHD. However, it employs an end-to-end annular 
feature matching approach, taking lots of time and making it slower 
than LGHD overall. On the contrary, GIFT utilizes an efficient Gaussian- 
weighted approach to build feature descriptors based on the LG feature, 
given that the filtering results have been generated in the feature 
detection process. Besides, the rotation invariance of GIFT is achieved by 
simply adjusting the elements order of the feature vector without com
plex rotation operations. These two schemes help GIFT be much faster 
than LGHD and RIFT. Additionally, POS-GIFT is only slightly slower 
than GIFT benefiting from the high efficiency of our POS strategy. 

5. Discussion 

In this section, we deeply analyze the performance of different 
methods from the perspective of algorithm design and principles. For the 
handcrafted methods, OS-SIFT was initially developed to match optical 
and SAR satellite images, introducing a new operator, ROEWA, 
improving the gradients calculation accuracy of SAR images. However, 
this design limits its application to specific multimodal images. PSO- 
SIFT proposes to use the second image derivative to reduce the modal
ities difference, But the second derivative is still not very good against 
NID. Besides, the PSO matching enhanced scheme it employed only has 
limited accuracy improvement. Unlike PSO-SIFT, LNIFIT first improves 
the similarity of the multimodal images through normalization opera
tion and then conducts feature detection and description on the 
normalized images. The normalization process can help detect repeated 
feature points and increase the consistency of feature descriptors, but it 
can only decrease the effect of NID rather than eliminate it. Besides, it 
adopts the orientation estimation approach of ORB, which is sensitive to 
rotation. LGHD and RIFT construct feature descriptors based on the 
multi-scale and multi-orientation filtering results, increasing the feature 
description and discrimination ability towards NID. However, LGHD 
uses the FAST operator to detect feature points on the multimodal im
ages, which are sensitive to NID and struggle to find common feature 
points, resulting in poor matching performance. Even worse, LGHD does 
not consider scale change and image rotation. Instead, RIFT detects 
feature points on the phase congruency, increasing the feature repeat
ability. Additionally, even if RIFT employs an end-to-end annular 
matching approach to tackle image rotation, it performs poorly under 
large rotation angles and still does not consider scale change. 

For the learning-based methods, RedFeat introduces a mutual 

weighting strategy to appropriately couple the task of feature detection 
and description, improving the matching ability. Moreover, it employs a 
multi-scale feature extraction strategy to attain scale invariance; how
ever, it exhibits heightened sensitivity to image rotation and perspective 
transforms. MatchFormer adopts a detector-free dense matching 
framework to enhance matching credibility in textureless regions, but its 
effectiveness is limited in handling complex NID and rotations. To 
mitigate the impact of modality differences, SemLA introduces the uti
lization of semantic information to constrain and guide the matching 
process. However, due to limitations in the training data, SemLA lacks 
semantic awareness for small objects, which prevents stable application 
in remote sensing images or images containing only small objects or 
objects devoid of semantic information. Remarkably, RedFeat, Match
Former, and SemLA encounter total failure in matching the MRI–SPECT 
and SPECT–CT modalities, likely because of the ambiguous structure, 
significant NID, and the absence of suitable annotated datasets. These 
factors could hinder the effective application of deep learning in 
multimodal matching as well. 

Our approach, POS-GIFT, absorbs the merits of LGHD and RIFT to 
handle NID by conducting feature detection and description on the 
multi-scale and multi-orientation log-Gabor filtering results. We also 
introduce a novel GFP feature, which concatenates the Gaussian weight 
features of evenly distributed sample points to capture the image 
structure, further increasing the resistance against modality difference. 
Then, we develop a robust primary orientation method by exploiting the 
characteristics of the GFP feature to make it strong to any rotation angle. 
However, similar structures and other unpredictable factors will still 
cause ambiguity and lead to incorrect matches even if the outlier 
removal algorithm, like RANSAC and FSC, is applied. Therefore, we 
propose the POS strategy, which refines the initial matching results and 
improves the matching accuracy using the positions-orientation-scale 
information. These innovations ensure the excellent performance of 
POS-GIFT on various multimodal images with severe NID and geometric 
distortions accounting for all evaluation metrics. 

6. Conclusion 

This paper proposes a novel multimodal matching method, POS- 
GIFT, which can robustly resist NID and geometric distortion (rota
tion, scale) in multimodal images. POS-GIFT is highly automatic, only 
containing a few parameters, and is not sensitive to them. Experiments 
prove the excellent resistance to image rotation. Furthermore, the 
Extensive qualitative and quantitative comparative results on various 
multimodal images reveal that POS-GIFT is superior to the state-of-the- 
art methods, PSO-SIFT, OS-SIFT, LGHD, RIFT, LNIFT, RedFeat, Match
Former, and SemLA. The main contribution of this study lies in a novel 
feature descriptor invariant to image rotation and a novel inlier 
recovery. 

Based on the characteristics of multimodal images, we designed a 
novel feature descriptor that captures the image structure, is invariant to 
image rotation at any angle, and can roughly work under severe NID. (1) 
We develop a point sampling pattern simulating the human vision sys
tem to capture image structure effectively; (2) We define the LG feature 
based on the multi-scale and multi-orientation Log-Gabor filter se
quences, generate a feature for each sampled point by integrating the 
local LG values with a Gaussian weight, and further create a feature 
descriptor for the target point by concatenating the features of all 
sampled points in a predefined order. This way of constructing feature 
descriptor sufficiently apply surrounding information and capture image 
structure. Moreover, the descriptor can be easily adapted to image 
rotation by changing the order of the constructed features of sampled 
points with the estimated primary orientation; (3) Discarding the 
traditional primary orientation estimation methods, we propose a novel 
primary orientation estimation method under the proposed framework, 
which can work well with large NID. We figure out the changing pattern 
of the LG map and identify that the change comes from both the image 

Table 7 
The average running times of the seven algorithms on DataSet1NT.  

Method OS- 
SIFT 

PSO- 
SIFT 

LGHD LNIFT RIFT GIFT POS- 
GIFT 

Time/s 9.9 27.0 18.2 15.8 23.2 10.3 11.9  
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rotation and fixed filtering orientation. We further discover that the 
norm values computed from the all-orientation filter response remain 
unchanged. Accordingly, we first use the norm map to estimate the 
primary orientation to eliminate one aspect of change, then modify the 
order errors and rotation errors of LG features to achieve image rotation 
invariance. 

Next, considering that our feature descriptor is based on the image 
structure, it is prone to produce false matches or even matching failures. 
We introduce a position-orientation-scale constraint inlier recovery 
strategy to eliminate the incorrect match points and build more correct 
correspondences. (1) Based on initial matches obtained from nearest 
neighbor matching, a coarse affine transformation between the images is 
estimated. The position of a certain point in the reference on the sensed 
image can be calculated. Even though the predicted position is not very 
accurate, the deviation will be significant. By constraining the searching 
area into the predicted position, the false matches produced by similar 
structures can be largely avoided. (2) By deforming the transformation 
matrix, we can get the rotation angle and scale change between the two 
images. Leveraging the calculated rotation angle, we reset the primary 
orientation of the feature points and rematch the feature points with the 
given primary orientation. By using the globally estimated primary 
orientation to substitute the locally estimated orientation, the estima
tion accuracy is improved, and the robustness against image rotation is 
enhanced. (3) Similarly, we unify the scale differences between images, 
improving the robustness against scale change. 

In the future, we will try to improve the efficiency, accuracy, and 
robustness of the proposed method from the following aspects: (1) create 
a comprehensive multimodal image benchmark and further evaluate the 
potential of the proposed method in practical applications; (2) improve 
our method to make it adapt to non-rigid distortions in multimodal 
images so that it can be applied to broader applications; (3) exploit the 
potential of deep learning technique in multimodal image matching, for 
example, to apply it into the steps of feature detection or feature 
description, or even the complete process, to leverage the benefits 
brought by the rapid development of artificial intelligence. 
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D. Gromek, Geometrical matching of SAR and optical images utilizing ASIFT 
features for SAR-based navigation aided systems, Sensors 19 (2019) 5500. 

[18] X. Zhang, W. Sultani, S. Wshah, Cross-view image sequence geo-localization, in: 
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer 
Vision, 2023, pp. 2914–2923. 

[19] Q. Li, R. Cao, J. Zhu, H. Fu, B. Zhou, X. Fang, S. Jia, S. Zhang, K. Liu, Q. Li, Learn 
then match: a fast coarse-to-fine depth image-based indoor localization framework 
for dark environments via deep learning and keypoint-based geometry alignment, 
ISPRS J. Photogramm. Remote Sens. 195 (2023) 169–177. 

[20] Z. Hu, Y. Hou, P. Tao, J. Shan, IMGTR: image-triangle based multi-view 3D 
reconstruction for urban scenes, ISPRS J. Photogramm. Remote Sens. 181 (2021) 
191–204. 

[21] L. Zhang, Y. Liu, Y. Sun, C. Lan, H. Ai, Z. Fan, A review of developments in the 
theory and technology of three-dimensional reconstruction in digital aerial 
photogrammetry, Cehui Xuebao/Acta Geod. Cartogr. Sin. 51 (2022) 1437–1457. 

[22] P. Maken, A. Gupta, 2D-to-3D: a review for computational 3D image reconstruction 
from x-ray images, Arch.Comput. Methods Eng. 30 (2023) 85–114. 

[23] J.Y. Ma, X.Y. Jiang, A.X. Fan, J.J. Jiang, J.C. Yan, Image matching from 
handcrafted to deep features: a survey, Int. J. Comput. Vis. 129 (2021) 23–79. 

[24] Y. Ye, B. Zhu, T. Tang, C. Yang, Q. Xu, G. Zhang, A robust multimodal remote 
sensing image registration method and system using steerable filters with first- and 
second-order gradients, ISPRS J. Photogramm. Remote Sens. 188 (2022) 331–350. 

[25] W. Zhaoxia, L. Yongxin, Z. Jie, F. Chenqing, Z. Hui, Interference image registration 
combined by enhanced scale-invariant feature transform characteristics and 
correlation coefficient, J. Appl. Remote Sens. 16 (2022), 026508. 

[26] M. Pan, F. Zhang, Medical image registration based on Renyi’s quadratic mutual 
information, IETE J. Res. 68 (2022) 4100–4108. 

[27] X. Liu, S. Chen, L. Zhuo, J. Li, K. Huang, Multi-sensor image registration by 
combining local self-similarity matching and mutual information, Front. Earth Sci. 
12 (2018) 779–790. 

[28] Y. Ye, J. Shan, L. Bruzzone, L. Shen, Robust registration of multimodal remote 
sensing images based on structural similarity, IEEE Trans. Geosci. Remote Sens. 55 
(2017) 2941–2958. 

[29] Y.X. Ye, L. Bruzzone, J. Shan, F. Bovolo, Q. Zhu, Fast and robust matching for 
multimodal remote sensing image registration, IEEE Trans. Geosci. Remote Sens. 
57 (2019) 9059–9070. 

[30] D.G. Lowe, Distinctive image features from scale-invariant keypoints, Int. J. 
Comput. Vis. 60 (2004) 91–110. 

[31] H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, Speeded-up robust features (SURF), 
Comput. Vis. Image Underst. 110 (2008) 346–359. 

[32] C. Gao, W. Li, R. Tao, Q. Du, MS-HLMO: multiscale histogram of local main 
orientation for remote sensing image registration, IEEE Trans. Geosci. Remote 
Sens. 60 (2022) 1–14. 

Z. Hou et al.                                                                                                                                                                                                                                     

http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0001
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0001
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0001
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0002
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0002
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0002
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0003
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0003
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0003
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0004
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0004
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0004
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0005
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0005
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0005
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0006
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0006
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0006
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0007
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0007
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0007
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0008
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0008
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0008
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0009
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0009
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0010
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0010
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0011
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0011
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0011
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0012
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0012
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0013
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0013
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0013
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0014
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0014
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0015
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0015
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0015
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0016
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0016
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0016
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0016
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0017
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0017
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0017
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0018
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0018
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0018
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0019
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0019
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0019
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0019
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0020
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0020
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0020
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0021
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0021
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0021
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0022
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0022
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0023
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0023
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0024
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0024
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0024
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0025
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0025
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0025
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0026
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0026
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0027
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0027
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0027
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0028
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0028
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0028
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0029
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0029
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0029
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0030
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0030
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0031
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0031
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0032
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0032
http://refhub.elsevier.com/S1566-2535(23)00343-3/sbref0032


Information Fusion 102 (2024) 102027

19

[33] B. Zhu, C. Yang, J. Dai, J. Fan, Y. Qin, Y. Ye, R₂FD₂: fast and robust matching of 
multimodal remote sensing images via repeatable feature detector and rotation- 
invariant feature descriptor, IEEE Trans. Geosci. Remote Sens. 61 (2023) 1–15. 

[34] C.A. Aguilera, A.D. Sappa, R. Toledo, LGHD: a feature descriptor for matching 
across non-linear intensity variations, in: 2015 IEEE International Conference on 
Image Processing (ICIP), 2015, pp. 178–181. 

[35] J. Li, Q. Hu, M. Ai, RIFT: multi-modal image matching based on radiation-variation 
insensitive feature transform, IEEE Trans. Image Process. 29 (2020) 3296–3310. 

[36] S. Zhu, T. Yang, C. Chen, Revisiting street-to-aerial view image geo-localization 
and orientation estimation, in: Proceedings of the IEEE/CVF Winter Conference on 
Applications of Computer Vision, 2021, pp. 756–765. 

[37] E. Honkavaara, H. Saari, J. Kaivosoja, I. Pölönen, T. Hakala, P. Litkey, J. Mäkynen, 
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